撰写教学教案还需要考虑教学资源的充分利用,如课件、实物、多媒体等,教案的完整准备能够提高我们的教学反馈和改进能力,以下是多客范文网小编精心为您推荐的分数乘法教案通用5篇,供大家参考。
分数乘法教案篇1
教学内容
教科书第1246~125页乘法与除法、分数的初步认识,并完成练习二十三第1~4题
三维目标
知识与技能
.经历对本学期所学知识回顾、梳理的过程,初步学会和复习的方法,逐步养成自觉所学知识的意识和良好的学习习惯
过程与方法
进一步理解两、三位数乘一位数和两位数除以一位数的算理,提高学生的计算熟练程度和正确率;进一步提高学生的估算能力,体会估算的实际意义,养成估算习惯
情感、态度与价值观
进一步巩固分数的意义,熟练地读写分数,会用分数表示实际操作结果,能熟练地进行简单的同分母分数的加减法计算
教学重点两、三位数乘一位数和两位数除以一位数
教学难点两、三位数乘一位数和两位数除以一位数
教具准备小黑板
教学过程
一、回忆梳理本学期学习的内容
(1)出示教科书第126页主题图,学生看图,说说他们在做什么。
(2)你能像他们一样,回顾一下本学期的学习内容和自己的学习情况吗?
(3)小组讨论:四人小组议一议本册书包含哪些知识?在讨论的基础上,将小组的共同意见写在卡片上。
教师巡视,关注学生交流情况,引导学生按一定的顺序梳理知识。
(4)小组汇报
出示小组汇报要求:
①请全体同学认真倾听每一位小组代表的发言。
②请各小组记录员边听边用笔将其他小组与你们小组相同的地方勾画出来。
③勾画完之后,请各小组发言的代表对前面同学的发言只作补充,不作重复汇报。
二、复习乘法与除法
1.复习口算
先以口算比赛的形式完成教科书第126页第1题,补充以下口算题。
80÷8=×5=4×25=65÷8=
指名汇报,并分别说说是怎样算的。
2.复习笔算
(1)问:用竖式计算两、三位数乘一位数和两位数除以一位数时要注意什么?
(2)学生独立计算教科书第126页第2题,教师巡视,对学习困难的`学生及时进行指导。
(3)全班交流,指名板演,并结合题目说一说两、三位数乘一位数和两位数除以一位数的计算方法。重点让学生说一说乘数中间有0的乘法,如:304×5=
3.复习估算
(1)学生先谈一下自己在生活中是否应用过估算,是怎样用的?
(2)学生独立完成教科书第127页乘法与除法的第3题,同桌再相互说说自己是怎样估算的。
全班交流,指名说出估算方法,如果学生有不同的估算方法,只要是合理的,都要给予充分肯定。如52×9≈,可以用50×9,也可以用52×10进行估算。
三、复习分数的初步认识
1.认识分数
(1)学生先独立完成教科书第127页分数的初步认识第1题。
(2)指名口答填写结果,并说一说为什么这样填。通过交流进一步强调平均分。
2.简单的同分母加减法
(1)独立完成教科书第127页分数的初步认识第2题。
(2)全班交流,汇报结果时,结合分数的意义让学生说一说同分母分数加减法的计算方法。
四、全课
今天我们复习了什么内容?是怎样进行和复习的?你有什么收获?
五、练习:完成练习二十三第1,2,3,4题
分数乘法教案篇2
教学目标:
1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
2、培养学生大胆猜测,勇于实践的思维品质。
教学重点:
会进行分数的混合运算,运用运算定律进行简便计算。
教学难点:
灵活运用运算定律进行简便计算。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1、运算定律。
我们在四年级时学习过乘法的运算定律,同学们还记得吗?
(学生回答,教师板书运算定律)
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
2、这些运算定律有什么用处?你能举例说明吗?
2574 0.36101
(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)
二、自主探究(自主学习,探讨问题)
1、引入
同学们应用乘法的运算定律,可以使整数、小数的.一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。
(板书课题:整数乘法的运算定律能否推广到分数乘法)
2、推导运算定律是否适用于分数。
(1)学生发表对课题的见解。
(2)验证
有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)
3、教学例5.
(1)出示: ,学生小组合作独立解答。
4、教学例6.
(1)出示: ,学生小组合作独立计算。
(2)小组汇报学习成果,说一说你们组应用了什么运算定律。
5、小结
应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。
三、拓展总结(应用拓展,盘点收获)
1、完成练习三的第6题。
学生说一说应用了什么运算定律。
2、完成课本第10页的做一做题目。
其中第2题引导学生讨论解题思路,把87改成86+1应用乘法分配律计算比较简便。
3、总结
这节课你有什么收获?
分数乘法教案篇3
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)
3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?
预设: 生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为。
提出质疑:3个相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法
1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?
预设: 生1:按照加法计算=(个)。 生2:(个)。
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。
2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知
1.例1“做一做”第1题 师:说出你的思考过程。
2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 l的和是多少。 预设2:还可以说成求12 l的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(l)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 l的一半,就是求12 l的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 l的是多少。”在这里都是把12 l看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”
2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)
五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了,用去了多少吨?
(2)一堆煤有吨,5堆这样的煤有多少吨?
3.拓展练习
1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
分数乘法教案篇4
教学内容:课本练习四的第6~10题。
教学目的:
1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。
2.培养分析能力,发展学生思维。
教学重点:正确分析数量关系,找准单位1
教学难点:依题意正确画图教学过程:
一、复习。
1.先说出下列各算式表示的意义,再口算出得数。
2.指出下面每组中的两个量,应把谁看作单位1。
(1)梨的筐数是苹果的。
(2)梨的筐数的和苹果的筐数相等。
(3)白羊只数的等于黑羊的只数。
(4)白羊的只数相当于黑羊的。
3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。
(1)有40筐苹果,梨的筐数是苹果的。()?
(2)梨的筐数是和苹果的筐数相等,有40筐。()?
(3)有40只白羊,白羊的只数的等于黑羊的只数。()?
(4)白羊的只数相当于黑羊的,有40只黑羊。()?
二、新授。
1.出示例3。
小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?
(1)指名读题,说也已知条件和问题。
(2)怎样用线段图表示已知条件和问题。
先画一条线段,表示谁储蓄的钱数?为什么?
学生回答后,教师画线段图。
再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:
根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。
然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:
根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。
教师画:
(2)分析数量关系。
引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。
(3)确定每一步的算法,列式计算。
①求小华储蓄的钱数怎样想?
引导学生回答:根据小华储蓄的钱数是小亮的
把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:
(元)
②求小新储蓄的钱数怎样想?
引导学生回答:根据小新储蓄的钱数是小华的`,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:
(元)
把上面的分上步算式列成综合算式,该怎样列?
(元)
(4)检验,写答语。答:小新储蓄了10元。
2.做一做。
让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。
3.小结。
从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?
学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。
三.巩固练习。
完成练习四的第6、7题。
四、全课小结。
这节课我们共同研究了什么?
解答这类分数乘法两步应用题关键是什么?
五、布置作业。
完成练习四的第8~10题。
教学反馈:
分数乘法教案篇5
【教材简析】
本课时的教学内容是在学生已经熟悉分数乘法的意义,初步掌握分数四则混合运算的基础上引导学生利用对求一个数的几分之几是多少以及其他相关数量关系的已有认识,解答一些稍复杂的与分数有关的实际问题。这些问题都是求一个数的几分之几是多少的实际问题的发展,需要学生用分数乘法和减法加以解决。
例题是已知某小学六年级参加学校运动会的总人数以及其中男运动员占总人数的几分之几,求女运动员人数的实际问题。教学时,教材首先呈现一条表示运动员人数的线段,要求学生在这条线段上分别表示男、女运动员所占的部分。通过这样的操作,一方面能使男运动员人数与总人数的关系更加清晰,另一方面也有利于启发学生思考:要求女运动员的人数,可以先算出男运动员有多少人。当学生画图操作后,教材不在呈现具体的分析过程,而是引导学生通过交流,进一步明确解题思路,并在此基础上列式解答。这样,引导学生根据自身的实际情况选择算法,有利于降低学习难度,也有利于促进学生更好地利用已有的解决问题的知识和经验。随后的练一练和练习十六的第1~2题中的数量关系都与例题相近,有利于学生进一步巩固和掌握例题所学习的分析和解决问题的方法。
【教学目标】
1、使学生学会用分数乘法和减法解决一些稍复杂的实际问题(不超过两步),进一步积累解决问题的策略,增强数学应用意识。
2、使学生在运用已有知识和经验进行解决一些稍复杂的实际问题的过程中,进一步体会数学知识之间的内在联系,体会数学知识和方法在解决实际问题中的价值,从而提高数学学习的兴趣和学好数学的信心。
【教学过程】
一、谈话引入:
同学们,你们参加过运动会吗?瞧!岭南小学举办了学生运动会(媒体同
时出示例题文字)他们六年级有45人参加,其中男运动占5/9,谁能知道女运动员有多少人?(学生自由读题,了解题意。)
评析:这一环节的设计,教师充分运用教材,以现实的'、学生熟悉喜爱的活动场景引入新课,既加强了与实际生活的联系,又激发了学生参与学习活动的热情。
二、探索新知:
1、设问:从题中你知道了什么?(学生先自己说一说,再在小组里交流。)
2、反馈。
学生充分交流后,都能感受到:这是一个部分数与总数之间相比较的问题,他涉及两个基本数量关系,一个是男运动员人数与女运动员人数相加的和等于六年级运动员的总人数,另一个是男运动员人数与运动员总人数的分数关系。但一下子要想知道女运动员有多少人,问题的思路不是很清晰。
3、以图促思。(媒体出示线段图。)
4、谈话:这是一条表示运动员总人数的线段图,你能在图上分别表示出男、女运动员所占的部分吗?
5、学生操作:
学生动手操作后,教师设问:要求女运动员有多少人,可以先算什么?
6、学生再一次交流,明确解体思路。(学生通过画图后,很容易想到,要求女运动员的人数,可以先算出男运动有多少人。再用总数减去男运动员的人数就能得到女运动员的人数了。)
7、列式解答。指名一生板演,其余学生在书上完成。
8、集体批改。(对解题正确的学生进行鼓励。)
9、探讨其它算法。
设问:想一想,还可以怎样算?
如果有学生想出行如a(1-n/m)的式子,要给以表扬,但不要求学生都去掌握。
评析:这一环节的设计,教师不是把解题思路和方法直接告诉学生,而是让学生通过观察、思考、操作、交流等活动,在充分感知的基础上,借助自己的经验,用自己的策略去解决问题。在探索出解题思路后,教师没有让学生用所谓公式化的方法,而是问学生:想一想,还可以怎样算?让学生自己体会,根据自身的实际情况选择算法,这样,不仅能促进学生更好地利用已有的解决问题的知识和经验,更有利于学生学习能力的培养。
三、巩固深化
1、完成练一练第1题
(1)弄清题意。(媒体出示题目,让学生仔细阅读。)
(2)谈话:要求还剩多少页没有看,可以先算出什么?
(3)学生独立分析并解答。
(4)集体反馈:指名汇报答案,教师重点问一问不同的方法先算的各是什么。
2、完成练一练第2题
(1)引导学生弄清题意。
(2)让学生独立解答。
(3)组内交流评议。
3、完成练习十六第1、2题
(1)指名两位学生板演,其余在自备本上完成。
(2)组织交流。
(3)集体反馈,重点让学生说一说解题时先算什么?
评析:这一环节的设计,教师利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。在整个练习过程中,始终以自主探索,合作交流为主。
四、总结回顾。
1、通过今天的学习,你又有什么收获?
2、用今天学到的方法可以解决生活中那些实际问题?课后可以留心观察,找到问题后进行解答,如在解答中遇到新的问题可以跟同学交流,也可以来问老师。
评析:这一环节的设计,教师让学生自己对本堂课所学知识进行总结,既使学生认识到本堂课到底学了什么,又培养了学生的概括能力和口头表达能力。让学生课后留心观察,找到问题后进行解答,不仅给学生提供展示自我的机会,同时,也培养了学生独立解决问题的能力。
会计实习心得体会最新模板相关文章:
★ 分数教案推荐7篇
★ 分数教案参考8篇
★ 分数教学教案8篇