编写教案可以促进教师深入思考教学内容,提高教学质量,教师应该根据学生的认知能力和兴趣爱好来调整教案,以提高学习的吸引力和效果,以下是多客范文网小编精心为您推荐的北师大版八年级上册数学教案8篇,供大家参考。
北师大版八年级上册数学教案篇1
●教学目标
(一)教学知识点
1.掌握相似 三角形的定义、表示法,并能根据定义判断两个三角形是否相似.
2.能根据相似比进行计 算.
(二)能力训练要求
1.能根据定义判断两个三角形是否相似,训练 学生的判断能力.
2.能根据相似比求长度和角度,培养学生的运用能力.
(三)情感与价值观要求
通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.
●教学重点 相似三角形的定义及运用.
●教学难点 根据定义求线段长或角的度数.
●教学过程
Ⅰ.创设问题情境,引入新课
今天, 我们就来研究相似三角形.
Ⅱ.新课讲解
1.相似三角形的定义及记法
三角对应相等,三边 对应成比例的两个三角形叫做相 似三角形。如△abc与△def相似,记作△abc∽△def
其中对应顶点要写在对应位置,如a与d,b与e,c与f相对应.ab∶de等于相似比.
2.想一想
如果△abc∽△def,那么哪些角是对应角?哪些边是对应边?对应 角 有什么关系?对应边呢?
所以 d、e、f. .
3.议一议,学生讨论
(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角 形一 定相似吗?两个等腰直角三角形呢?为 什么?
(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
结论:两 个全等三角形一定相似.
两个 等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.
4.例题
例1、有一块呈三角形形状 的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的 长都是3.5 cm,求该草坪其他两边的实际长度.
例2.已 知△abc∽△ade,ae=50 cm,ec=30 cm,bc =70 cm,bac=45,
acb=40,求(1)aed和ade的度数。(2)de的长.
5.想一想
在例2的条件下,图中有哪些线段成比例?
Ⅲ.课堂练习 p129
Ⅳ.课时小结
相似三角形的 判定方法定义法.
Ⅴ.课后作业
北师大版八年级上册数学教案篇2
一、内容和内容解析
1.内容
二次根式的性质。
2.内容解析
本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.
对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.
二、目标和目标解析
1.教学目标
(1)经历探索二次根式的性质的过程,并理解其意义;
(2)会运用二次根式的性质进行二次根式的化简;
(3)了解代数式的概念.
2.目标解析
(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;
(2)学生能灵活运用二次根式的性质进行二次根式的化简;
(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.
三、教学问题诊断分析
二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.
本节课的教学难点为:二次根式性质的灵活运用.
四、教学过程设计
1.探究性质1
问题1 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
?设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.
问题2 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
?设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.
问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0).
?设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.
例2 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
?设计意图】巩固二次根式的性质1,学会灵活运用.
2.探究性质2
问题4 你能解释下列式子的含义吗?
师生活动:教师引导学生说出每一个式子的含义.
?设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.
问题5 根据算术平方根的意义填空,并说出得到结论的依据.
师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.
?设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.
问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?
师生活动:引导学生归纳得出二次根式的性质: ( ≥0)
?设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.
例3 计算
(1) ;(2) .
师生活动:学生独立完成,集体订正.
?设计意图】巩固二次根式的性质2,学会灵活运用.
3.归纳代数式的概念
问题7 回顾我们学过的式子,如, ( ≥0),这些式子有哪些共同特征?
师生活动:学生概括式子的共同特征,得出代数式的概念.
?设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.
4.综合运用
(1)算一算:
?设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.
(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?
?设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.
(3)谈一谈你对 与 的认识.
?设计意图】加深学生对二次根式性质的理解.
5.总结反思
(1)你知道了二次根式的哪些性质?
(2)运用二次根式性质进行化简需要注意什么?
(3)请谈谈发现二次根式性质的思考过程?
(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.
6.布置作业:教科书习题16.1第2,4题.
五、目标检测设计
1. ; ; .
?设计意图】考查对二次根式性质的理解.
2.下列运算正确的是( )
a. b. c. d.
?设计意图】考查学生运用二次根式的性质进行化简的能力.
3.若 ,则 的取值范围是 .
?设计意图】考查学生对一个数非负数的算术平方根的理解.
4.计算: .
?设计意图】考查二次根式性质的灵活运用.
北师大版八年级上册数学教案篇3
第二环节:探索发现勾股定理
1.探究活动??
内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:
问:你能发现各图中三个正方形的面积之间有何关系吗?
学生通过观察,归纳发现:
结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。
意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边。通过对特殊情形的探究得到结论1,为探究活动二作铺垫。
效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。
2.探究活动二
内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?
(1)观察下面两幅图:
(2)填表:
a的面积
(单位面积) b的面积
(单位面积) c的面积
(单位面积)
左图
右图
(3)你是怎样得到正方形c的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。
学生的方法可能有:
方法一:
如图1,将正方形c分割为四个全等的直角三角形和一个小正方形。
方法二:
如图2,在正方形c外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。
方法三:
如图3,正方形c中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。
意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质。由于正方形c的面积计算是一个难点,为此设计了一个交流环节。
效果:学生通过充分讨论探究,在突破正方形c的面积计算这一难点后得出结论2.
3.议一议
内容:(1)你能用直角三角形的边长 , , 来表示上图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度。2中发现的规律对这个三角形仍然成立吗?
勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用 , 分别表示直角三角形的两直角边和斜边,那么。
数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。
意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。
效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力。
上面内容就是差异网为您整理出来的3篇《北师大版八年级上册数学教案》,希望可以启发您的一些写作思路。
北师大版八年级上册数学教案篇4
一、指导思想
贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
二、教材分析
义务教育课程标准实验教科书,人教版八年级数学上册共_章,__大节。
“三角形”我们并不陌生,但是三角形的内角和等于180度如何证明和怎样运用这个结论求出多边形的内角和,这些问题可以在本章中得到解决,而且能学到研究几何图形的重要思想和方法。
“全等三角形”会带领同学们认识形状、大小相同的图形,探索两个三角形形状、大小相同的条件,了解角平分线的性质。
在我们周围的世界,会看到许多对称的现象,怎样认识轴对称与轴对称图形十三章“轴对称”会告诉答案。
在“整式的乘除与因式分解”中,我们可以用含有字母的式子表示实际问题中的数量关系,解决更多与数量关系有关的问题,加深对“从数到式”这个由具体到抽象的过程的认识。
我们知道数有整数和分式之分,式也有整式和分式之别。在“分式”这章中你将看到分数的影子。学习了分式,你会认识到它是我们研究数量关系并用来解决问题的重要工具。
三、教学措施
1、认真学习钻研新课标,掌握教材,编写好“教案”“学案”。
2、认真备课,争取充分掌握学生动态。
认真钻研大纲和教材,做好各章节的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以提高自己的教学理论水平和教学实践能力。
3、认真上好每一堂课。
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。想尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。
4、落实每一堂课后辅助,查漏补缺。
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学习信心,尽可能“吃得了”。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
5、积极与其它老师沟通,加强教研教改,提高教学水平。
6、经常听取学生的合理化建议。
7、深化两极生的训导。
八年级是承上启下的非常关键的一年,学习习惯、学习方法的养成在此一举。因此,在教学中要密切注意学生的思想动态,及时引导,使好的更好,差的迎头赶上。尽可能多的抓学生,面广,量大,同时也要注意保质保量的完成教学任务。
北师大版八年级上册数学教案篇5
教学建议
1、平行线等分线段定理
定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。
注意事项:定理中的.平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。
定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。
2、平行线等分线段定理的推论
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。
记忆方法:“中点”+“平行”得“中点”。
推论的用途:(1)平分已知线段;(2)证明线段的倍分。
重难点分析
本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。
本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。
教法建议
平行线等分线段定理的引入
生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:
①从生活实例引入,如刻度尺、作业本、栅栏、等等;
②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。
教学设计示例
一、教学目标
1、使学生掌握平行线等分线段定理及推论。
2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。
3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。
4、通过本节学习,体会图形语言和符号语言的和谐美
二、教法设计
学生观察发现、讨论研究,教师引导分析
三、重点、难点
1、教学重点:平行线等分线段定理
2、教学难点:平行线等分线段定理
四、课时安排
l课时
五、教具学具
计算机、投影仪、胶片、常用画图工具
六、师生互动活动设计
教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习
七、教学步骤
?复习提问】
1、什么叫平行线?平行线有什么性质。
2、什么叫平行四边形?平行四边形有什么性质?
?引入新课】
由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?
(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)
平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。
注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。
下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。
已知:如图,直线 , 。
求证: 。
分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。
(引导学生找出另一种证法)
分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。
证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。
∴
∵ ,
∴
又∵ , ,
∴
∴
为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。
引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。
再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。
推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。
注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。
接下来讲如何利用平行线等分线段定理来任意等分一条线段。
例 已知:如图,线段 。
求作:线段 的五等分点。
作法:①作射线 。
②在射线 上以任意长顺次截取 。
③连结 。
④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。
? 、 、 就是所求的五等分点。
(说明略,由学生口述即可)
?总结、扩展】
小结:
(l)平行线等分线段定理及推论。
(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。
(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。
(4)应用定理任意等分一条线段。
八、布置作业
教材p188中a组2、9
九、板书设计
十、随堂练习
教材p182中1、2
北师大版八年级上册数学教案篇6
一、学习目标
1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式。
学习方法:归纳、概括、总结。
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1.请看乘法公式
左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式讲解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精讲精练
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
补充例题:判断下列分解因式是否正确。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、课堂练习
教科书练习。
六、作业
1、教科书习题。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
北师大版八年级上册数学教案篇7
教学目标:
1、知道负整数指数幂=(a≠0,n是正整数)、
2、掌握整数指数幂的运算性质、
3、会用科学计数法表示小于1的数、
教学重点:
掌握整数指数幂的运算性质。
难点:
会用科学计数法表示小于1的数。
情感态度与价值观:
通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。能利用事物之间的类比性解决问题、
教学过程:
一、课堂引入
1、回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:am?an = am+n(m,n是正整数);
(2)幂的乘方:(am)n = amn (m,n是正整数);
(3)积的乘方:(ab)n = anbn (n是正整数);
(4)同底数的幂的除法:am÷an = am?n(a≠0,m,n是正整数,m>n);
(5)商的乘方:()n = (n是正整数);
2、回忆0指数幂的规定,即当a≠0时,a0 = 1、
3、你还记得1纳米=10?9米,即1纳米=米吗?
4、计算当a≠0时,a3÷a5 ===,另一方面,如果把正整数指数幂的运算性质am÷an = am?n (a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0)。
二、总结:一般地,数学中规定:当n是正整数时,=(a≠0)(注意:适用于m、n可以是全体整数)教师启发学生由特殊情形入手,来看这条性质是否成立、事实上,随着指数的取值范围由正整数推广到全体整数,前面提到的运算性质都可推广到整数指数幂;am?an = am+n(m,n是整数)这条性质也是成立的、
三、科学记数法:
我们已经知道,一些较大的数适合用科学记数法表示,有了负整数指数幂后,小于1的正数也可以用科学记数法来表示,例如:0。000012 = 1。2×10?即小于1的正数可以用科学记数法表示为a×10?n的形式,其中a是整数位数只有1位的正数,n是正整数。启发学生由特殊情形入手,比如0。012 = 1。2×10?2,0。0012 = 1。2×10?3,0。00012 = 1。2×10?4,以此发现其中的规律,从而有0。0000000012 = 1。2×10?9,即对于一个小于1的正数,如果小数点后到第一个非0数字前有8个0,用科学记数法表示这个数时,10的指数是?9,如果有m个0,则10的指数应该是?m?1。
北师大版八年级上册数学教案篇8
一。教学目标:
1.了解方差的定义和计算公式。
2.理解方差概念的产生和形成的过程。
3.会用方差计算公式来比较两组数据的波动大小。
二。重点、难点和难点的突破方法:
1.重点:方差产生的必要性和应用方差公式解决实际问题。
2.难点:理解方差公式
3.难点的突破方法:
方差公式:s = [( - ) +( - ) +…+( - )]比较复杂,学生理解和记忆这个公式都会有一定困难,以致应用时常常出现计算的错误,为突破这一难点,我安排了几个环节,将难点化解。
(1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望。教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。
(2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。
(3)第三环节教师可以直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。
三。例习题的意图分析:
1.教材p125的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2.教材p154例1的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四。课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五。例题的分析:
教材___例_在分析过程中应抓住以下几点:
1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六。随堂练习:
1.从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2.段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数1 2 3 4 5
段巍13 14 13 12 13
金志强10 13 16 14 12
参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.__的成绩比__的成绩要稳定。
七。课后练习:
会计实习心得体会最新模板相关文章: